Dan Rader

Dan Rader

Professor, University of Pensylvania

The Rader laboratory is focused on two major themes: 1) novel pathways regulating lipid and lipoprotein metabolism and atherosclerosis inspired by unbiased studies of human genetics; 2) factors regulating the structure and function of high density lipoproteins and the process of reverse cholesterol transport and their relationship to atherosclerosis. A variety of basic cell and molecular laboratory techniques, mouse models, and translational research approaches are used in addressing these questions.

Some examples of ongoing projects are:

  1. The roles of sortilin (gene SORT1) and tribbles-1 (gene TRIB1) in lipoprotein metabolism and atherosclerosis. Variants at the SORT1 locus are among the most strongly associated with LDL cholesterol and (coronary artery disease) in the human genome, and variants at the TRIB1 locus are significantly associated with all major plasma lipid traits and CAD. A variety of tissue-specific deleted mouse models, gene targeting in iPS cells with differentiation to hepatocytes, and cell biologic and biochemical approaches are being employed.
  2. Functional genomics and mechanistic studies of a number of additional genes at loci significantly associated with lipid and metabolic traits, CAD, or other cardiovascular traits. Most of these genes harbor rare coding variants associated with these traits. In addition to elucidating fundamental mechanisms by which the protein influences relevant biology, the influence of specific mutations on protein structure and function are being explored.
  3. Molecular regulation of HDLmetabolism and reverse cholesterol transport using cells, mice, and humans
  4. Deep phenotyping of humans with low-frequency and rare variants in genes influencing lipid and cardiovascular traits, including the generation of iPS cells and differentiation to a variety of relevant cell types